On the asymptotic distribution of GLR for impropriety of complex signals
نویسندگان
چکیده
In this paper, the problem of testing impropriety (i.e., second-order noncircularity) of a sequence of complexvalued random variables (RVs) based on the generalized likelihood ratio test (GLRT) for Gaussian distributions is considered. Asymptotic (w.r.t. the data length) distributions of the GLR are given under the hypothesis that RVs are proper or improper, and under the true, not necessarily Gaussian distribution of the RVs. The considered RVs are independent but not necessarily identically distributed: assumption which has never been considered until now. This enables us to deal with the practical important situations of noncircular RVs disturbed by residual frequency offsets and additive circular noise. The receiver operating characteristic (ROC) of this test is derived as byproduct, an issue previously overlooked. Finally illustrative examples are presented in order to strengthen the obtained theoretical results.
منابع مشابه
An Improved Automatic EEG Signal Segmentation Method based on Generalized Likelihood Ratio
It is often needed to label electroencephalogram (EEG) signals by segments of similar characteristics that are particularly meaningful to clinicians and for assessment by neurophysiologists. Within each segment, the signals are considered statistically stationary, usually with similar characteristics such as amplitude and/or frequency. In order to detect the segments boundaries of a signal, we ...
متن کاملAn Evaluation of an Adaptive Generalized Likelihood Ratio Charts for Monitoring the Process Mean
When the objective is quick detection both small and large shifts in the process mean with normal distribution, the generalized likelihood ratio (GLR) control charts have better performance as compared to other control charts. Only the fixed parameters are used in Reynolds and Lou’s presented charts. According to the studies, using variable parameters, detect process shifts faster than fixed pa...
متن کاملAsymptotic distributions of Neumann problem for Sturm-Liouville equation
In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.
متن کاملAsymptotic Efficiencies of the MLE Based on Bivariate Record Values from Bivariate Normal Distribution
Abstract. Maximum likelihood (ML) estimation based on bivariate record data is considered as the general inference problem. Assume that the process of observing k records is repeated m times, independently. The asymptotic properties including consistency and asymptotic normality of the Maximum Likelihood (ML) estimates of parameters of the underlying distribution is then established, when m is ...
متن کاملEstimation of Parameters for an Extended Generalized Half Logistic Distribution Based on Complete and Censored Data
This paper considers an Extended Generalized Half Logistic distribution. We derive some properties of this distribution and then we discuss estimation of the distribution parameters by the methods of moments, maximum likelihood and the new method of minimum spacing distance estimator based on complete data. Also, maximum likelihood equations for estimating the parameters based on Type-I and Typ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Signal Processing
دوره 91 شماره
صفحات -
تاریخ انتشار 2011